Тренировочный вариант №15 (2023)

Часть 1

Для выполнения заданий **1–3** используйте следующий ряд химических элементов. Ответом в заданиях 1–3 является последовательность цифр, под которыми указаны химические элементы **в данном ряду**.

1) Mg 2) S 3) Ba 4) Ca 5) Si

[1] Определите, двухзарядные ионы каких из указанных в ряду элементов имеют электронную конфигурацию аргона.

[2] Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д.И. Менделеева находятся в одной группе. Расположите выбранные элементы в порядке увеличения силы притяжения их валентных электронов к ядру. Запишите в поле ответа номера выбранных элементов в нужной последовательности.

[3] Из числа указанных в ряду элементов выберите два элемента, которые образуют оксид состава 90_2 .

[4] Выберите два верных утверждения о химических связях.

- 1) В молекуле аммиака присутствует водородная связь
- 2) В кремнии и оксиде кремния (IV) присутствует один и тот же тип связи
- 3) Энергия связи С=С больше, чем энергия связи С-С
- 4) Ковалентная неполярная связь присутствует только в простых веществах
- 5) Длина связи С–О меньше, чем длина связи С–Ѕ

[5] Среди предложенных формул и названий, расположенных в пронумерованных ячейках, выберите: A) раствор слабого основания, Б) раствор щелочи, B) карбид

1	Zn(OH) ₂	2	известняк	3	Na ₂ C ₂
4	нашатырный спирт	5	дисульфид углерода	6	BaH ₂
7	поташ	8	известковая вода	9	хлорная вода

Запишите в таблицу номер ячейки, в которой расположено вещество.

Α	Б	В

[6] К одной из пробирок с раствором хлорида меди (II) добавили разбавленный раствор соединения X, а через другую пропустили газ Y. В результате в первой пробирке наблюдалось выпадение голубого осадка, не растворяющегося в избытке раствора X, а во второй – выпадение черного осадка. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

- 1) NH₃
- 2) H₂S
- 3) AgNO₃
- 4) NaOH
- 5) CO₂

Х	Υ

[7] Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) HF

1) KCl, H₂O, CO₂

Б) Fe₂O₃ В) NO₂ 2) H₂O, KOH, Cu 3) SiO₂, NaOH, CH₃COOLi

Γ) NH₄Br

4) HNO₃, Na₂CO₃, Mg

5) NaOH, Cl₂, AgNO₃

Α	Б	В	Γ

[8] Установите соответствие между реагирующими веществами и продуктами их взаимодействия: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) $K_2ZnO_2 + HNO_3 \rightarrow$

1) KNO₃ + K₂[Zn(OH)₄]

Б) $Zn(OH)_2 + HNO_3 \rightarrow$

2) $Zn(NO_2)_2 + H_2$

B) $Zn + HNO_3 \rightarrow$

3) $Zn(NO_3)_2 + H_2O$

 Γ) Zn(NO₃)₂ + KOH \rightarrow

4) $KNO_3 + Zn(NO_3)_2 + H_2O$

5) $Zn(NO_3)_2 + NO + H_2O$

6) $ZnO + KNO_3 + H_2O$

Α	Б	В	L

[9] Задана следующая схема превращений веществ:

$$Fe \rightarrow X \rightarrow Fe(OH)_2 \xrightarrow{\qquad \qquad} Fe(OH)_3.$$

Определите, какие из указанных веществ являются веществами X и Y.

- 1) FeS
- 2) H₂O
- 3) FeCl₂
- 4) KMnO₄, H⁺
- 5) H₂O₂

Х	Υ

[10] Установите соответствие между классом/группой веществ и названием вещества, которое к нему(ней) принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) вторичные амины

1) пропантриол-1,2,3

Б) первичные амины

- 2) 2-аминопропан
- В) третичные спирты 3) метилэтиламин
 - 4) 2-метилбутанол-2

Α	Б	В

[11] Из предложенного перечня выберите два вещества, которые содержат карбонильную группу.

- 1) рибоза
- 2) глицерин
- 3) уксусная кислота
- 4) этаналь
- 5) этанол

[12] Из предложенного перечня выберите все вещества, с которыми при соответствующих условиях реагирует фенол, но не реагирует бензол.

- 1) FeĆl₃
- 2) KMnO₄
- 3) NaOH
- 4) HNO₃
- 5) Br_{2 (водн.)}

[13] Из предложенного перечня выберите две пары веществ, реакция между которыми протекает с образованием сложного эфира.

- 1) анилин и иодэтан
- 2) аланин и пропанол-2
- 3) глицин и аланин
- 4) целлюлоза и азотная кислота
- 5) глицин и соляная кислота

[14] Установите соответствие между веществом и продуктом, преимущественно образующемся при его взаимодействии с бромом в мольном соотношении 1:1: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) циклопропан

1) 1,2-дибромпропан

Б) бензол

2) бромбензол

В) пропен

3) бромциклогексан

Г) циклогексан

- 4) 1,3-дибромпропан
- 5) 1,2,3,4,5,6-гексабромциклогексан
- 6) 1,6-дибромгексан

Α	Б	В	٢

[15] Установите соответствие между схемой реакции и продуктом, который преимущественно в ней образуется: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) OHC-CHO
$$\xrightarrow{\text{Cu}(\text{OH})_2, t^{\circ}}$$

B) CH₂OH-CH₂OH $\xrightarrow{\text{H}_2\text{SO}_4, t^{\circ}}$

E) C₂H₂ $\xrightarrow{\text{KMnO}_4, \text{H}_2\text{O}}$

B) C₂H₂ $\xrightarrow{\text{H}_2\text{O}, \text{H}^+, t^{\circ}}$

1)	H ₂ C=CH ₂
1)	$H_2C=CH_2$

Наш банк заданий

[16] Задана следующая схема превращений веществ:

этаналь \rightarrow X \rightarrow дивинил \rightarrow Y \rightarrow уксусная кислота.

Определите, какие из указанных веществ являются веществами X и Y.

- 1) бутен-1
- 2) хлорэтен
- 3) этанол
- 4) бутан
- 5) 1,2-дибромэтан

Х	Υ

[17] Выберите все вещества, термическое разложение которых относится к окислительно-восстановительным реакциям:

- 1) оксид ртути (II)
- 2) дихромат аммония
- 3) гидрокарбонат метиламмония
- 4) метан
- 5) гидроксид меди (II)

[18] Из предложенного перечня внешних воздействий выберите все воздействия, которые приводят к увеличению скорости реакции, протекающей по схеме:

Fe + кислота
$$\rightarrow$$
 соль + H₂

- 1) понижение концентрации соли
- 2) замена соляной кислоты на фтороводородную такой же концентрации
- 3) замена 5%-ной СН₃СООН на 12%-ную НВг
- 4) повышение давления
- 5) измельчение железа

ЕГЭ с Химическим котом

@chem4vou

[19] Установите соответствие между схемой реакции и свойством, которое проявляет атом азота в ней: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) Na + NH₃ \rightarrow NaNH₂ + H₂
- 1) является окислителем
- Б) $CH_3NH_2 + HNO_2 \rightarrow CH_3OH + N_2 + H_2O$ 2) является восстановителем
- B) $(NH_4)_2Cr_2O_7 \rightarrow N_2 + Cr_2O_3 + H_2O$
- 3) является и окислителем, и

восстановителем

4) не является окислителем или восстановителем

Α	Б	В

[20] Установите соответствие между формулой соли и полуреакцией, протекающей на катоде при электролизе ее водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) $AI(NO_3)_3$

1) $Hq^{2+} + 2e = Hq^0$

Б) Hg(NO₃)₂

2) $2H_2O + 2e = H_2 + 2OH^-$

B) RbNO₃

- 3) $Rb^+ + 1e = Rb^0$
- 4) $2H_2O 4e = O_2 + 4H^+$
- 5) $AI^{3+} + 3e = AI^{0}$

Α	Б	В

[21] Для выполнения задания используйте следующие справочные данные.

Концентрация (молярная, моль/л) показывает отношение количества растворённого вещества (n) к объёму раствора (V).

рН («пэ аш») – водородный показатель; величина, которая отражает концентрацию ионов водорода в растворе и используется для характеристики кислотности среды.

Шкала рН водных растворов электролитов

Для веществ, приведённых в перечне, определите характер среды их водных растворов, имеющих одинаковую концентрацию (моль/л).

- 1) Фенолят натрия
- 2) Пропановая кислота
- 3) Серная кислота
- 4) Хлорат стронция

Запишите номера веществ в порядке убывания значения рН их водных растворов.

[22] Установите соответствие между уравнением обратимой химической реакции и направлением смещения химического равновесия при увеличении температуры: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) $H_{2(r)} + CI_{2(r)} \rightleftharpoons 2HCI_{(r)} + Q$
- (F) 2SO_{2(Γ)} + O_{2(Γ)} (F) 2SO_{3(Γ)} + O
- B) $C_4H_{6(r)} + 2H_{2(r)} \rightleftarrows C_4H_{10(r)} + Q$
- Γ) $C_{(TB)} + H_2O_{(\Gamma)} \rightleftarrows CO_{(\Gamma)} + H_2 O$

А	Б	В	Γ

- 1) в сторону продуктов реакции
- 2) в сторону исходных веществ
- 3) равновесие не смещается

[23] В сосуд объемом 2 л поместили пары брома, водород и бромоводород в мольном соотношении 1:1,5:1 в порядке перечисления, нагрели его и стали измерять количество брома в реакционной смеси. Первое измерение соответствует началу реакции.

№ измерения	1	2	3	4	5	6	7	8	9	10
<i>n</i> (Br ₂), моль	2,00	1,70	1,50	1,36	1,28	1,22	1,20	1,20	1,20	1,20

Используя приведенные данные, определите исходную концентрацию водорода (X) и равновесную концентрацию бромоводорода (Y). Выберите из списка номера правильных ответов:

- 1) 0,6 моль/л
- 2) 0,8 моль/л
- 3) 1.1 моль/л
- 4) 1.5 моль/л
- 5) 1,6 моль/л
- 6) 1,8 моль/л

Х	Υ

[24] Установите соответствие между веществами и реагентом, с помощью которого их можно различить: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

5) FeCl₃

 A) CH₃OH и CH₂OH-CH₂OH
 1) NaOH

 Б) C₀H₅OH (p-p) и C₂H₅OH (p-p)
 2) CaCO₃

 B) C₂H₅COOH и HCOOH
 3) Cu(OH)₂

 Г) C₂H₅OH и CH₃CHO
 4) AgBr

Α	Б	В	Γ

[25] Установите соответствие между сырьем и названием метода, который используется для его переработки: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) каменный уголь

1) обжиг

Б) мазут

2) вакуумная перегонка

В) пирит

коксование
 омыление

Α	Б	В

[26] Вычислите массу соли, которая должна выпасть в осадок при охлаждении 350 г 18%-го раствора соли, чтобы массовая доля соли в растворе над осадком уменьшилась до 12%. Ответ округлите до целых.

[27] В результате реакции, термохимическое уравнение которой:

 $2(NH_2)_2CO_{(TB.)} + 3O_{2(r)} = 2N_{2(r)} + 2CO_{2(r)} + 4H_2O_{(ж)} + 1264$ кДж, образовалось 57,12 л (при н.у.) газов. Вычислите количество выделившейся при этом теплоты (в кДж). Ответ запишите с точностью до десятых.

[28] При спекании фосфата кальция со смесью оксида кремния (IV) и угля получено 133,28 л (при н.у.) угарного газа с выходом 85% от теоретического. Вычислите массу соли, взятой для проведения этой реакции. Ответ запишите в граммах в виде целого числа.

Часть 2

Для выполнения заданий **29, 30** используйте следующий перечень веществ: азотная кислота, гидроксид кальция, сульфид меди (II), алюминий, сульфит натрия, фтороводород. Допустимо использование водных растворов.

[29] Из предложенного перечня выберите вещества, между которыми протекает окислительно-восстановительная реакция. Число электронов, которое принимает в ней окислитель, равно числу электронов, которое отдает восстановитель (в расчете на один атом). Запишите уравнение реакции с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.

[30] Из предложенного перечня веществ выберите два вещества, между растворами которых протекает реакция ионного обмена без видимых признаков. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с использованием выбранных веществ.

[31] Нитрат калия прокалили. Образовавшийся твердый остаток прореагировал с раствором иодида калия, подкисленным серной кислотой. Полученное простое вещество ввели в реакцию с алюминием в присутствии следовых количеств воды, продукт внесли в избыток раствора гидроксида натрия. Напишите уравнения четырёх описанных реакций.

[32] Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$(CH3)2NH2F \longrightarrow X3 \xrightarrow{+X_2} CH3NH2 \longrightarrow X1 \longrightarrow X2 \xrightarrow{Na, C6H5Cl, t}$$

При написании уравнений реакций используйте структурные формулы органических веществ.

[33] При окислении некоторого углеводорода с холодным водным раствором перманганата калия образуется соединение **Y**, взаимодействие которого с избытком бромоводорода приводит к веществу **X**. Органическое вещество **X** содержит 36,36% углерода, 60,61% брома по массе и водород. На основании данных в задаче:

- 1. Проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу неизвестного вещества **X**;
- 2. Составьте возможную структурную формулу вещества **X**, которая однозначно отражает порядок связи атомов в его молекуле;
- 3. Напишите уравнение реакции получения вещества **Y** при взаимодействии соответствующего углеводорода с водным раствором перманганата калия, используя структурную формулу вещества.

[34] Смесь гексагидрата хлорида кальция и декагидрата карбоната натрия, содержащую 43,2 г кристаллизационной воды, растворили в 250 мл воды, выпавший осадок отделили. В полученном растворе не содержалось ни ионов кальция, ни карбонатионов. К нему добавили 89,25 г раствора хлорида алюминия, в результате массовая доля хлорид-ионов в итоговом растворе оказалась равна 6,39%. Вычислите массовую долю хлорида алюминия в добавленном растворе.

Более 2000 заданий для подготовки – в нашем печатном сборнике!

- Формат А4, 500 страниц
- Соответствует демоверсии 2023 года
- Включает № 1-28 ЕГЭ, в каждой линии от 50 до 120 вопросов разной сложности

Подробнее о нем на сайте: stepenin.ru/merch/tests-bigbook

Ответы к варианту №15 (2023)

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
24	341	25	35	483	42	3425	4351	35	324
[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]
14	1235	24	4213	4254	34	124	35	432	212
[21]	[22]	[23]	[24]	[25]	[26]	[27]	[28]		
1423	2221	46	3533	321	24	805,8	434		

№29

AI – восстановитель, N^{+5} (HNO₃) – окислитель.

Максимальный балл: 2

№30

$$2HNO_3 + Ca(OH)_2 = Ca(NO_3)_2 + 2H_2O$$

 $2H^+ + 2NO_3^- + Ca^{2+} + 2OH^- = Ca^{2+} + 2NO_3^- + 2H_2O$
 $H^+ + OH^- = H_2O$

Максимальный балл: 2

№31

- 1. $2KNO_3 = 2KNO_2 + O_2$
- 2. $2KNO_2 + 2KI + 2H_2SO_4 = 2K_2SO_4 + I_2 + 2NO + 2H_2O$
- 3. $2AI + 3I_2 = 2AII_3$
- 4. $AII_3 + 4NaOH = Na[AI(OH)_4] + 3NaI$

Максимальный балл: 4

№32

1.
$$CH_3NH_2 + HNO_2 \longrightarrow CH_3OH + N_2 + H_2O$$

2.
$$CH_3OH + HCI \longrightarrow CH_3CI + H_2O$$

3.
$$\langle -CI + 2Na + CH_3CI \rightarrow \langle -CH_3 + 2NaCI \rangle$$

4.
$$CH_3NH_2 + CH_3CI \longrightarrow (CH_3)_2NH_2CI$$

5.
$$(CH_3)_2NH_2CI + AgF \longrightarrow (CH_3)_2NH_2F + AgCI$$

Максимальный балл: 5

№33

1. Общая формула вещества C_xH_yBr_z

$$\omega(H) = 100\% - 36,36\% - 60,61\% = 3,03\%$$

$$x: y: z = \frac{36,36}{12}: \frac{3,03}{1}: \frac{60,61}{80} = 3,03:3,03:0,758 = 4:4:1 = 8:8:2$$

Молекулярная формула: C₈H₈Br₂

2. Структурная формула:

3. Уравнение реакции:

Максимальный балл: 3

№34

- 1. Запишем уравнение реакции $CaCl_2 + Na_2CO_3 = CaCO_3 + 2NaCl$
- 2. Вычислим количества и массы солей в исходной смеси Пусть $n(CaCl_2 \cdot 6H_2O) = n(Na_2CO_3 \cdot 10H_2O) = x$ моль, тогда $n(H_2O) = 6x + 10x = 16x$ моль $18 \cdot 16x = 43.2$ x = 0.15 моль $m(CaCl_2 \cdot 6H_2O) = n \cdot M = 0.15 \cdot 219 = 32.85 \text{ r}$ $m(Na_2CO_3 \cdot 10H_2O) = n \cdot M = 0.15 \cdot 286 = 42.9 \,\mathrm{r}$

3. Вычислим количество хлорида алюминия

$$m(p-pa) = m(CaCI_2 \cdot 6H_2O) + m(Na_2CO_3 \cdot 10H_2O) + m(H_2O) - m(CaCO_3) + m_{p-pa}(AICI_3)$$

 $m(p-pa) = 32,85 + 42,9 + 250 \cdot 1 - 0,15 \cdot 100 + 89,25 = 400 \text{ r}$
 $m(CI^-) = m(p-pa) \cdot \omega(CI^-) = 400 \cdot 0,0639 = 25,56 \text{ r}$

Наш банк заданий

stepenin.ru/tasks

$$n(Cl^-) = m : M = 25,56 : 35,5 = 0,72$$
 моль $n(Cl^- B NaCl) = n(NaCl) = 0,3$ моль $n(Cl^- B AlCl_3) = 0,72 - 0,3 = 0,42$ моль $n(AlCl_3) = 1/3n(Cl^- B AlCl_3) = 0,14$ моль

4. Вычислим массовую долю хлорида алюминия

 $m(AICI_3) = n \cdot M = 0.14 \cdot 133.5 = 18.69 \text{ r}$ $\omega(AICI_3) = 18.69 : 89.25 \cdot 100\% = 20.94\%$

Максимальный балл: 4

