Тренировочный вариант № 20 (2020)

Для выполнения заданий 1–3 используйте следующий ряд химических элементов. Ответом в заданиях 1–3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

[1] Определите, двухзарядные ионы каких из указанных в ряду элементов в основном состоянии имеют восьмиэлектронную внешнюю оболочку.

[2] Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке усиления кислотных свойств их высших гидроксидов. Запишите в поле ответа номера выбранных элементов в нужной последовательности.

[3] Из числа указанных в ряду элементов выберите два элемента, которые образуют летучее водородное соединение состава RH_3 .

[4] Из предложенного перечня выберите два вещества, которые имеют ионное строение.

- 1) HBr
- 2) NH₄H₂PO₄
- 3) Na₂O
- 4) CO₂
- 5) CH₃OH

[5] Установите соответствие между группой веществ и формулой соединения, которое к ней относится: к каждой позиции, обозначенной буквой, подберите соответствующую позицию из второго столбца, обозначенную цифрой.

А) щелочь

- 1) H₂SiO₃
- Б) нерастворимый гидроксид
- 2) LiOH

В) сильная кислота

3) CuO 4) HI

A	Б	В

- [6] Из предложенного перечня выберите два простых вещества, которые реагируют и с концентрированной серной кислотой, и с растворами щелочей.
 - 1) фосфор
 - 2) углерод
 - 3) медь
 - 4) цинк

5)	гось
----	------

[7] В две пробирки, содержащие, соответственно, растворы веществ X и Y, по каплям добавили разбавленную соляную кислоту. В первой пробирке наблюдали выпадение и последующее растворение осадка, а во второй – выделение газа с резким запахом. Выберите вещества X и Y, которые могут вступать в описанные реакции.

- 1) CuS
- 2) NaHCO₃
- 3) K₂SO₃
- 4) AgNO₃
- 5) Na₂[Zn(OH)₄]

X	Y	

[8] Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) Al_2O_3

1) C, NaOH, K[Al(OH)₄] (p-p)

Б) NH₃

2) O2, H3PO4, NaCl

B) CO₂

3) CuO, FeCl_{3 (p-p)}, H₂O₂ 4) BaO, Na₂CO₃, H₂SO₄

Γ) K₂SO₄

5) BaCl₂, H₂SO₄, Pb(NO₃)₂

A	Б	В	Γ

[9] Установите соответствие между реагирующими веществами и продуктами их взаимодействия: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) AlCl₃ + NH₃ · H₂O \rightarrow

1) $Al(NO_3)_3 + Cl_2 + H_2O$

 $^{\circ}$ Al(OH)₃ + HNO_{3 (κοημ.)} →

2) $Al(NO_3)_3 + NO + H_2O$ 3) $Al(NO_3)_3 + H_2O$

B) Al + HNO₃ \rightarrow Γ) Al(OH)Cl₂ + HNO₃ \rightarrow

4) Al(OH)₃ + NH₄Cl 5) Al(NO₃)₃ + HCl + H₂O

6) $Al_2O_3 + NO_2 + H_2O$

Α	Б	В	Γ

[10] Задана следующая схема превращений веществ: $CuS \to X \to Y \xrightarrow{HNO_{3 \text{ (конц.)}}} NO_2$. Определите, какие из указанных веществ являются веществами Х и Ү.

- 1) CuO
- 2) Cu(NO₃)₂
- 3) Cu(OH)2
- 4) Cu₂O
- 5) CuI₂

X	Y

[11] Установите соответствие между формулой вещества и гомологической формулой класса (группы), к которому оно относится: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) CH₃CH₂C(O)CH₃

1) $C_n H_{2n-2}$

Б) CH₃-C₆H₄-OH

2) C_nH_{2n-6}O

B) CH₂=CH-CH=CH₂

- 3) C_nH_{2n}
- 4) C_nH_{2n}O

A	Б	В

[12] Из предложенного перечня выберите два вещества, у которых есть структурные изомеры.

- 1) цис-бутен-2
- 2) пропаналь
- 3) этилен
- 4) пропан
- 5) метаналь

[13] Из предложенного перечня выберите два вещества, которые в соответствующих условиях способны присоединить 3 моль хлора.

- 1) метан
- 2) бензол
- 3) бутадиен-1,3
- 4) винилацетилен
- 5) пропин

[14] Выберите два вещества, с которыми реагирует муравьиная кислота, но не реагирует ацетальдегид.

- 1) гидрокарбонат натрия
- 2) водород
- 3) метанол
- 4) оксид кальция
- 5) гидроксид меди (II)

- [15] Из предложенного перечня выберите два соединения, которые можно получить при гидрировании нитроалканов.
 - 1) $C_6H_5NH_2$
 - 2) (CH₃)₂NH
 - 3) CH₃CH(NH₂)CH₂CH₃
 - 4) CH₃CH₂CH₂NH₂
 - 5) CH₃CN

[16] Установите соответствие между химическим процессом и продуктом, который преимущественно в нем образуется: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) конверсия метана
- 1) ацетальдегид
- Б) гидрирование этина
- 2) ацетилен
- В) нитрование толуола Г) дегидрогалогенирование
- 3) n-нитротолуол 4) м-нитротолуол

1,2-дихлорэтана

- 5) синтез-газ
- 6) этен

A	Б	В	Γ

[17] Установите соответствие между схемой реакции и веществом Х, которое в ней участвует: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- A) X + $H_2 \xrightarrow{\text{кат.}}$ циклогексанол
- 1) 1-фенилэтандиол-1,2
- Б) стирол + KMnO₄ (H₂O) $\stackrel{0^{\circ}C}{\rightarrow}$ X
- 2) бензойная кислота

B) ацетон + $H_2 \xrightarrow{\text{кат.}} X$

- 3) пропанол-1
- Γ) X + KMnO₄ $\xrightarrow{H^+}$ гександиовая
- 4) циклогексен
- кислота
- 5) фенол
- 6) изопропиловый спирт

A	Б	В	Γ

[18] Задана следующая схема превращений веществ:

$$X \xrightarrow{H_2 O}$$
 этанол $\xrightarrow{NH_3, \text{ кат., } t^\circ} Y$

Определите, какие из указанных веществ являются веществами X и Y.

- 1) ацетилен
- 2) этилат калия
- 3) диэтиловый эфир
- 4) диметиламин
- 5) диэтиламин

X	Y

[19] Из предложенного перечня выберите две реакции присоединения.

- 1) бромирование циклогексана
- 2) гидратация бутина-2
- 3) взаимодействие анилина с бромной водой
- 4) взаимодействие стирола с бромной водой
- 5) дегидратация этанола

[20] Из предложенного перечня выберите две реакции, на скорость которых влияет изменение давления, но не влияет площадь поверхности соприкосновения реагентов:

- 1) $Zn + 2HCl_{(p-p)} = ZnCl_2 + H_2$
- 2) $Na_2CO_{3(p-p)} + 2HCl_{(p-p)} = 2NaCl + CO_2 + H_2O$
- 3) $2CO + O_2 = 2CO_2$
- 4) $4CO + Fe_3O_4 = 4CO_2 + 3Fe$
- 5) $CH_4 + 2O_2 = CO_2 + 2H_2O$

[21] Установите соответствие между формулой вещества и окислительновосстановительными свойствами атома хлора в нем: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) HCl

1) только окислитель

Б) Cl₂

2) только восстановитель

B) HClO₄

- 3) и окислитель, и восстановитель
- 4) ни окислитель, ни восстановитель

A	Б	В

[22] Установите соответствие между формулами солей и газообразными (при н.у.) продуктами, которые выделяются на инертных электродах при электролизе этих солей в указанных условиях: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

A) NaF (p-p)

1) водород

Б) K₂SO_{4 (n-n)}

2) галоген

B) CuBr_{2 (p-p)}

3) кислород

Г) RbCl (распл.)

- 4) кислород, водород
- 5) водород, галоген
- 6) газообразные продукты не образуются

A	Б	В	Γ

[23] Установите соответствие между названием соли и цветом, в который окрашивается метилоранж в ее водном растворе: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) нитрит калия

- 1) фиолетовый
- Б) сульфат этиламмония
- 2) оранжевый 3) желтый

В) глицинат калия Г) хлорат натрия

4) красно-розовый

A	Б	В	Γ

[24] Установите соответствие между воздействием и направлением, в которое сместит это воздействие равновесие обратимой реакции

$$C_2H_5OH_{(r)} \rightleftarrows H_2O_{(r)} + C_2H_{4(r)} - Q$$
:

к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) охлаждение реакционного сосуда 1) в сторону прямой реакции
- Б) добавление катализатора
- 2) в сторону обратной реакции
- В) понижение концентрации спирта 3) не смещается
- Г) увеличение объема сосуда

Α	Б	В	Γ

[25] Установите соответствие между веществами и реагентом, с помощью которого их можно различить: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

- А) циклогексанол и толуол
- 1) FeCl₃
- Б) пропанол-2 и уксусная кислота
- Br_{2 (водн.)}
- В) циклогексен и пентан
- 3) Na
- Г) глицерин (водн. р-р) и
- 4) Cu(OH)2

- ГЛИЦИЛГЛИЦИН (водн. р-р)
- 5) KCl

Α	Б	В	Γ

[26] Установите соответствие между веществом и получаемым из него полимером: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) этиленгликоль

1) полиэтилен

Б) винилбензол

2) полиэтилентерефталат

В) этилен

- 3) полистирол
- 4) капрон

A	Б	В

[27] К 40%-му раствору соли добавили 120 мл воды и получили раствор, в котором массовая доля воды равна 75%. Вычислите массу соли (в граммах), которая содержалась в исходном растворе. В ответ запишите целое число.

[28] При сжигании порции муравьиной кислоты образовалось 4,18 г углекислого газа и выделилось 24320 Дж теплоты. Вычислите тепловой эффект реакции

$$2HCOOH_{(m.)} + O_{2(r.)} = 2CO_{2(r.)} + 2H_2O_{(m.)} + Q$$

Ответ дайте в кДж с точность до целых.

[29] Вычислите объем сернистого газа (в мл, при н.у.), который выделится при взаимодействии 13,13 г гидросульфита кальция с избытком соляной кислоты. В ответ запишите целое число.

Для выполнения заданий **30, 31** используйте следующий перечень веществ: гипохлорит натрия, оксид марганца (II), серная кислота, оксид фосфора (III), гидроксид натрия, сероводород. Допустимо использование водных растворов.

[30] Из предложенного перечня выберите оксид и вещество, раствор которого вступает в окислительно-восстановительную реакцию с этим оксидом. В ходе реакции не наблюдается выпадения осадка или выделения газа, а полученный раствор оказывается бесцветным. Запишите уравнение реакции с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.

[31] Из предложенного перечня выберите слабый электролит и вещество, между которыми протекает реакция ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с использованием выбранных веществ.

[32] На твердый иодид калия подействовали концентрированной фосфорной кислотой. Выделившийся газ растворили в воде и к полученному раствору добавили железную окалину. Образовавшуюся соль выделили и поместили в раствор нитрата серебра, осадок отфильтровали, а фильтрат выпарили и прокалили твердый остаток. Составьте уравнения четырех описанных реакций.

[33] Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

этанол
$$\longrightarrow$$
 дивинил $\stackrel{\text{H}_2}{\longrightarrow}$ $X_1 \stackrel{\text{KMnO}_4}{\longrightarrow}$ $\text{CH}_3\text{COOH} \stackrel{\text{CaCO}_3}{\longrightarrow}$ $X_2 \stackrel{\text{t}}{\longrightarrow}$ X_3

При написании уравнений реакций используйте структурные формулы органических веществ.

[34] Пероксид натрия массой 4,68 г внесли в горячую воду. Через полученный после прекращения выделения газа охлажденный 10%-ный раствор пропускали углекислый газ до тех пор, пока он не перестал поглощаться. Затем к раствору добавили при тщательном перемешивании навеску безводного сульфата алюминия, содержащую 4,515 · 10²² ионов. Вычислите массовые доли веществ в конечном растворе. Растворимостью углекислого газа в воде и гидролизом солей пренебречь.

- [35] При сжигании органического вещества массой 2,12 г было получено 7,04 г углекислого газа и 1,8 мл воды. Известно, что при нитровании этого вещества с азотной кислотой образуется единственное мононитропроизводное. На основании данных в задаче:
 - 1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу органического вещества А;
 - 2) составьте структурную формулу неизвестного вещества, которая однозначно отражает порядок связи атомов в его молекуле;
 - напишите уравнение реакции органического вещества с азотной кислотой, используя структурную формулу вещества.

Тренировочные варианты ЕГЭ по химии vk.com/chem4you stepenin.ru/tasks Тренировочные варианты ЕГЭ по химии vk.com/chem4you stepenin.ru/tasks

Ответы

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
23	452	45	23	214	14	53	4315	4325	14
[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	[19]	[20]
421	12	24	14	34	5632	5164	25	24	35
[21]	[22]	[23]	[24]	[25]	[26]	[27]	[28]	[29]	
231	4462	3432	2321	3424	231	80	512	2912	

Nº 30

$$2NaClO + P_2O_3 + 3H_2O = 2NaCl + 2H_3PO_4$$

$$2P^{+3} - 4\bar{e} = 2P^{+5}$$
 1
 $Cl^{+1} + 2\bar{e} = Cl^{-1}$ 2

NaClO (Cl⁺¹) – окислитель; P_2O_3 (P⁺³) – восстановитель.

Максимальный балл: 2

№ 31

$$H_2S + 2NaOH = Na_2S + 2H_2O$$

$$H_2S + 2Na^+ + 2OH^- = 2Na^+ + S^{2-} + 2H_2O$$

$$H_2S + 2OH^- = S^{2-} + 2H_2O$$

Примечание: можно составить реакцию с образованием кислой соли.

Максимальный балл: 2

№ 32

- 1) $KI + H_3PO_4 = KH_2PO_4 + HI$
- 2) $Fe_3O_4 + 8HI = 3FeI_2 + I_2 + 4H_2O$
- 3) $FeI_2 + 2AgNO_3 = Fe(NO_3)_2 + 2AgI$
- 4) $4\text{Fe}(NO_3)_2 = 2\text{Fe}_2O_3 + 8NO_2 + O_2$

Максимальный балл: 4

Nº 33

1)
$$2 \text{ CH}_3$$
-CH₂-OH $\xrightarrow{\text{ZnO, Al}_2\text{O}_3}$ CH₂-CH—CH=CH₂ + H₂ + 2H₂O

4)
$$2 \text{ CH}_3 \text{COOH} + \text{CaCO}_3 \longrightarrow (\text{CH}_3 \text{COO})_2 \text{Ca} + \text{CO}_2 + \text{H}_2 \text{O}$$

5)
$$(CH_3COO)_2Ca \xrightarrow{t} CH_3-C-CH_3+CaCO_3$$

Максимальный балл: 5

Nº 34

- 1. Запишем уравнения реакций
 - (1) $2Na_2O_2 + 2H_2O = 4NaOH + O_2$
 - (2) $NaOH + CO_2 = NaHCO_3$
 - (3) $6NaHCO_3 + Al_2(SO_4)_3 = 2Al(OH)_3 + 6CO_2 + 3Na_2SO_4$

2. Вычислим количества исходных веществ

 $n(Na_2O_2) = m : M = 4,68 : 78 = 0,06$ моль

n(ионов) = 4,515 · 10²² : 6,02 · 10²³ = 0,075 моль

 $n(Al_2(SO_4)_3) = 1/5n(ионов) = 0,015$ моль

3. Вычислим массы растворенных веществ

 $n(NaOH) = 2n(Na_2O_2) = 0,12$ моль

 $n(NaHCO_3) = n(NaOH) = 0,12$ моль

 $0.12/6 > 0.015 \Rightarrow Al_2(SO_4)_3$ в недостатке

 $n(Na_2SO_4) = 3n(Al_2(SO_4)_3) = 0,045$ моль

 $n_3(NaHCO_3) = 6n(Al_2(SO_4)_3) = 0,09$ моль

 $n_{\text{ост.}}(\text{NaHCO}_3) = 0.12 - 0.09 = 0.03$ моль

 $m(\text{Na}_2\text{SO}_4) = n \cdot M = 0.045 \cdot 142 = 6.39 \text{ r}$

 $m_{\text{ост.}}(\text{NaHCO}_3) = n \cdot M = 0.03 \cdot 84 = 2.52 \ \Gamma$

4. Вычислим массовые доли веществ

 $m_{\text{p-pa}} = m_{10\% \, p\text{-}pa}(\text{NaOH}) + m_2(\text{CO}_2) + m(\text{Al}_2(\text{SO}_4)_3) - m_3(\text{CO}_2) - m(\text{Al}(\text{OH})_3)$

 $m(NaOH) = n \cdot M = 0.12 \cdot 40 = 4.8 \text{ r}$

 $m_{10\% p-pa}(NaOH) = 4.8:0.1 = 48 r$

 $m_{\text{p-pa}} = 48 + 0.12 \cdot 44 + 0.015 \cdot 342 - 0.09 \cdot 44 - 0.03 \cdot 78 = 52.11 \,\text{r}$

 $\omega(\text{Na}_2\text{SO}_4) = 6.39 : 52.11 \cdot 100\% = 12.26\%$

 $\omega(NaHCO_3) = 2,52 : 52,11 \cdot 100\% = 4,84\%$

Максимальный балл: 4

№ 35

1. Формула вещества C_xH_vO_z

n(C) = n(CO₂) = 7,04 : 44 = 0,16 моль

 $n(H) = 2n(H_2O) = 2 \cdot 1.8 : 18 = 0.2$ моль

 $m(0) = 2,12 - 0,16 \cdot 12 - 0,2 \cdot 1 = 0 \rightarrow$ кислорода нет

x: y = 0.16: 0.2 = 1: 1.25 = 4: 5 = 8: 10

Молекулярная формула - С₈Н₁₀

2. Структурная формула:

$$H_3C$$
—C H_3

3. Уравнение реакции:

$$H_3C$$
— $CH_3 + HNO_3 \longrightarrow H_3C$ — $CH_3 + H_2O$

Максимальный балл: 3